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Abstract

Nash equilibrium often does not seem to accurately predict behavior. In
experimental game theory, it is usually assumed that the monetary payoffs
in the game represent subjects’ utilities. However, subjects may actually
play a very different game. In this case, mutual knowledge of preferences
may not be satisfied. In our experiment, we first elicit subjects’ preferences
over the monetary payoffs for all players. This allows us to identify equilibria
in the games that subjects actually are playing. We then examine whether
revealing other subjects’ preferences leads to more equilibrium play and find
that this information indeed has a significant effect. Furthermore, it turns
out that subjects are more likely to play maxmin and maxmax strategies
than Nash equilibrium strategies. This indicates that subjects strongly rely
on heuristics when selecting a strategy.

Keywords: Behavioral Game Theory, Epistemic Game Theory, Nash
Equilibrium, Incomplete Information Games, Strategic Ambiguity

JEL classifications: C91, C72

1. Introduction

People frequently show behavior that seems to be inconsistent with stan-
dard Nash equilibrium behavior such as cooperation in one-shot social dilemma
situations. Nash equilibria in experiments are usually determined using the
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monetary payoffs in the game. However, if subjects not only care about their
own monetary payoffs, they may actually play a very different type of game.
For example, instead of facing a social dilemma, the involved parties might
actually play a coordination game (see Example 1 on page 5 for more de-
tails). In such situations, it is not clear whether there is common knowledge
about preferences over the outcomes of the games. We study the impact of
this aspect on equilibrium play.

Common (or, at least, mutual) knowledge about preferences is a core
assumption in game theory. In the words of Polak (1999, p. 673):

“In games of complete information, common knowledge of payoffs
is usually taken to be implicit. Indeed, this is often taken to be
the definition of complete information.”?

Mutual or even common knowledge about preferences is not only assumed
in traditional game theory, but also often in behavioral game theory. Most
level-k models assume that payoffs are mutually known and that agents form
beliefs about other agents’ play based on this information (see, e.g., Costa-
Gomes et al., 2001). Other approaches such as Quantal Response Equilib-
rium? introduced by McKelvey and Palfrey (1995) incorporate a stochastic
element that can be interpreted as uncertainty about other players’ prefer-
ences. Our findings might also be relevant for these concepts.

Despite the ubiquity of the (implicit) assumption of mutually or com-
monly known preferences, there is little empirical evidence about the degree
to which it affects the reliability of the Nash prediction. However, previous
experimental research suggests that it should not be taken for granted. For
example, Healy (2011) finds that subjects fail to accurately predict other sub-
jects’ preferences over possible outcomes in normal-form 2 x 2 games. The
purpose of the experiment reported in this paper is to test whether mutual
knowledge of preferences is important for the Nash prediction.*

2This means that “complete information” cannot be part of the rules of the game (the
game-form) because it involves assumptions about knowledge of individual preferences.

3In Quantal Response Equilibrium, there is an error term in players’ payoff functions
whose distribution is assumed to be known.

“Notice that we examine one-shot dominance-solvable 2 x 2 games. In the context of
repeated games, it has been studied whether subjects are able to learn the preferences of
their opponents (see, e.g., Oechssler and Schipper, 2003). However, it is not the purpose of
our experiment to examine learning in games. Repeated games require repeated interaction
and are much more complex to analyze than one-shot games.



Our results can be summarized as follows: (1) subjects are indeed sig-
nificantly more likely to play a Nash equilibrium strategy when they are
informed about their opponents’ preferences over the possible outcomes of
the game. When preferences are not mutually known, the frequency of equi-
librium play is rather low. (2) A strategy is more likely to be played when
it cannot lead to the lowest payoffs (mazmin strategy) or when it can lead
to the highest one (mazmaz strategy). Furthermore, maxmin and maxmax
strategies predict behavior better than Nash equilibrium strategies, especially
when preferences are not mutually known.

Result (1) shows that subjects not only fail to accurately predict other
players’ preferences, the lack of such information also significantly affects
their behavior. Whenever it is unlikely that players know each other’s pref-
erences and some players have no strictly dominant strategy, it might there-
fore be advisable to use a more general equilibrium concept. Following Polak
(1999), we may view a situation where preferences are not mutually known as
a game with incomplete information. Such a situation can then be modeled
as a Bayesian game (Harsanyi, 1967-1968).5

Result (2) suggests that subjects largely rely on heuristics rather than on
strategic considerations. The reason may be that subjects face two types of
uncertainty in the experiment: there is uncertainty about the other player’s
payoff function in the baseline treatment. In the information treatment,
subjects are informed about the other player’s preferences but they still
may not believe that he is rational. Uncertainty about opponent’s ratio-
nality and/or payoff function can lead to uncertainty about the other agents’
strategy choices with unknown probabilities. Uncertainty about probabili-
ties (ambiguity) can affect peoples’ behavior, as Ellsberg (1961) illustrated.®
The strategic ambiguity model of Eichberger and Kelsey (2014) shows that
maxmin and/or maxmax strategies can be a best response to strategic am-

5Players with different preferences can be thought of as different types and it is then
assumed that the prior distribution of types is commonly known. This approach has been
taken in various fields. In auction theory, e.g., the assumption that all bidders are risk
neutral and that this is commonly known has been relaxed (see, e.g., Hu and Zou, 2015).

SWhen people face ambiguity, they frequently do not behave as if they were governed
by subjective probabilities.



biguity.”

Theoretically, in the tested dominance-solvable 2x2 games, mutual knowl-
edge of payoff functions along with mutual knowledge of rationality suffices
to ensure that agents will play a Nash equilibrium.® To see this, suppose one
player (called “D”) has a strictly dominant strategy. Given that D is assumed
to know his own payoff function and is rational, D will play his dominant
strategy. The other player (called “ND”) believes that D is rational and that
he has a strictly dominant strategy. Therefore, ND believes that D will play
this strategy. Since ND is himself assumed to be rational and to know his
own payoff function, ND will play a best response to D’s dominant strategy.

1.1. The experiment

In stage 1 of the experiment, we elicit subjects’ preferences over monetary
payoff pairs (they will be referred to as “payment pairs”). The same payment
pairs are then used to construct eight different 2 x 2 games (or more precisely
eight different game-forms). In stage 2, each subject plays four out of the
eight games exactly once. We ran two waves of experiments so that all games
are played. Our design allows us to avoid the assumption that subjects only
care about their own monetary payments. Instead, we can use the preferences
elicited in stage 1 to describe the game that our subjects play.’

"This model allows for optimistic responses to strategic ambiguity. Most other strategic
ambiguity models such as those of Lo (1996), Eichberger and Kelsey (2000), and Lehrer
(2012) assume ambiguity-averse behavior. While these models can explain maxmin be-
havior, they cannot rationalize maxmax behavior.

8See Aumann and Brandenburger (1995) for sufficient conditions that ensure Nash
equilibrium in general normal-form 2 x 2 games. Notice that there is a difference between
“knowledge” and “(probability one) belief”. Roughly, “knowledge” refers to true belief
justified by either direct observation or logical deduction, whereas “belief” may be false.
Therefore, it would be more accurate to assume that players believe that others are rational
with probability one.

9We maintain the assumption that preferences depend only on players’ monetary pay-
ments. That is, the specific game-form, other subjects’ preferences, or any other factors
have no effect on subjects’ ordinal ranking of payment pairs. Of course, this is to some de-
gree a consequentialist approach and consequentialism has been criticized in the literature
repeatedly. In Section 3.4, we will discuss evidence suggesting that such considerations
do not play an important role in the games used in this study. However, we cannot com-
pletely exclude that violations of consequentialism might have caused some noise and led
to a systematic downward bias so that the “true” treatment effect is even higher.



This will be illustrated with the help of Example 1 below, which corre-
sponds to one of the games played in the experiment.

Example 1. Consider the prisoner’s-dilemma-type game-form in Figure 1.
The numbers in the matriz correspond to the amount of money paid to the
players, where the first number is the row player’s payment and the second
number is the column player’s payment.

L | R
Ul4,4]8,3
D|3,8|77

Figure 1: Prisoner’s-dilemma-type game-form

Depending on players’ preferences over the payment pairs various games can
be induced by the game-form in Example 1. Let r be the row and ¢ be
the column player and denote the payment pairs by (z,,z.) € R?. Suppose
player i’s (i € {r,c}) preferences over payment pairs are represented by a
function v; : R? — R. In general, the games induced by the game-form in
Example 1 take the following form:

U | v.(4,4),v.(4,4) | v.(8,3
D | v,.(3,8),0:(3,8) | v.(7,7),v.(7,7)

Figure 2: Induced games by the game-form in Example 1

The induced game is only a prisoner’s dilemma game if the players mainly
care about their own payoffs, e.g., if v;(x,,x.) = z; for i € {r,c}. In this
case, the game has only one Nash equilibrium (U, L), i.e., everyone defects.
On the other hand, the game that results if players have other-regarding
preferences can be very different. For instance, suppose players’ preferences
are represented by the following utility function v;(z,, x.) = min{z,, z.} for
i € {r,c}. Then, (U, L) as well as (D, R), i.e. mutual cooperation, are Nash
equilibria.



In this paper, whenever we refer to a “Nash equilibrium”, we refer to the
Nash equilibria of the induced game using the preferences elicited in stage
1 of the experiment. We focus on those situations in which a unique pure
Nash equilibrium exists (according to the reported preferences): one player
has a strictly dominant strategy and the other player has a non-dominant
unique pure Nash equilibrium strategy in the induced game.'® Consequently,
we consider situations in which subjects’ opponents have a strictly dominant
strategy. In the baseline treatment, the reported preferences are not revealed.
Hence, subjects cannot be certain that their opponents have a dominant
strategy.

For example, suppose the row player in the induced game above is selfish.
His pure strategy U is then strictly dominant. A column player who prefers
(4,4) to (8,3) and (7,7) to (3,8) then has a unique equilibrium strategy that
is not dominant: L. In treatment baseline, such a column player may not
be sure whether row is selfish or not and might therefore occasionally play
R rather than L.

In our second treatment (called “info”), the column player can see that
row has a strictly dominant strategy and might therefore play the unique
equilibrium strategy L more often. Intuitively, this logic can explain our first
result that subjects are more likely to play a Nash equilibrium strategy in
treatment info compared to treatment baseline. Furthermore, if a subject is
uncertain about the strategy choice of his opponent, then, depending on his
attitude towards uncertainty, he will try to avoid the lowest ranked payment
pair (maxmin), or, to reach the highest ranked one (maxmax). This intuition
explains our second result.

1.2. Related literature

The papers closest to ours are Healy (2011) and recent working papers
by Wolff (2014) and Attanasi et al. (2016).

10Tn our experiment, we only ask subjects to rank payment pairs ordinally. Eliciting a
cardinal ranking of payment pairs would require a more complicated procedure that some
subjects might fail to understand. It is not obvious that subjects can reliably assign a
cardinal utility to each payment pair. As a result, we cannot compute Nash equilibria in
mixed strategies for the induced games. Moreover, we will exclude the decisions of subjects
who have a strictly or weakly dominant strategy in the induced game. Information about
their opponent’s preferences is not necessary for those subjects to compute a best response
and as a result, information about the other player’s preferences should not be expected
to have an effect on behavior.



Healy examines whether the sufficient conditions for Nash equilibrium
identified by Aumann and Brandenburger (1995) are satisfied when subjects
play normal-form 2 x 2 games in the laboratory. For that purpose, subjects
first choose a strategy and then report their beliefs about behavior and pref-
erences of their opponent. Subjects’” own preferences and rationality are also
measured. Healy finds that there are only very few instances where all con-
ditions are satisfied. Focusing on mutual knowledge of preferences, he finds
that both players correctly predict how their opponent ordinally ranked the
payment pairs in only 64% of games played. Healy concludes that “The fail-
ure of Nash equilibrium stems in a large part from the failure of subjects to
agree on the game they are playing.”

Since mutual knowledge of preferences is one of three conditions that are
together sufficient for Nash equilibrium in 2 x 2 games (see Aumann and
Brandenburger, 1995) and since the other two are also not fully satisfied in
Healy’s experiment, it is difficult to assess the impact of the failure of mutual
knowledge of preferences on equilibrium play in isolation. By introducing a
treatment in which information about the opponent’s preferences is directly
revealed, we can identify the impact of mutual knowledge on equilibrium play
by holding all other factors constant.

Wolff (2014) studies behavior in three-person sequential public good games.
In contrast to our experiment, he does not reveal subjects’ preferences over
the material outcomes. Instead, he elicits subjects’ best-response correspon-
dences to the contributions of the other players. In one of his treatments,
these are then revealed to all group members. This information has a much
smaller effect on the frequency of equilibrium play compared to the treatment
effect in our experiment.

Revealing best-response correspondences is obviously not sufficient for
subjects to be able to predict how much their opponents will contribute:
Wolff measures beliefs about others’ contributions to the public good and
finds that subjects tend to overestimate these. As a result, they often fail to
play an equilibrium strategy even though their contributions tend to be con-
sistent with their beliefs and their own reported best-responses. As opposed
to the dominance-solvable 2 x 2 games that we study, several iterations of
alternating best responses are required in Wolff’s experiment to compute the
Nash equilibrium. Some subjects might not be able to do so.

Attanasi et al. (2016) also argue that when subjects have belief-dependent
or other-regarding preferences, they are actually playing a game of incom-
plete information. In their experiment, subjects form beliefs about their

7



opponent’s type (e.g., selfish or prosocial) and choose their strategy based on
these belief. Attanasi et al. then test whether revealing information about
opponent’s preferences and beliefs changes behavior in a Mini Trust Game.
They find that first movers are more likely to transfer the money when they
face a non-selfish trustee (“guilt-averse” trustee) and vice versa. The Mini
Trust Game can be considered as a 2 X 2 coordination game with two pure
equilibria (trust, share) and (not trust, not share). Subjects clearly coordi-
nate better on one of these two equilibria when belief-dependent preferences
are disclosed. While this result points in a similar direction as our results,
Attanasi et al. do not systematically test the impact of mutual knowledge
of preferences on the Nash prediction. In particular, the second movers can
observe the decisions of the first movers. Therefore, the preferences of the
first movers are not relevant for their strategy choices.

This paper is organized as follows. The next section describes the exper-
imental design. We then present our results, and conclude in Section 4. The
appendix provides additional information about the experiment.

2. Experimental design

Our experiment consists of two treatments (called “baseline” and “info”)
with two stages each. In the first stage of both treatments, we elicit subjects’
preferences over eight different payment pairs. These payment pairs are then
used to construct eight different 2 x 2 games. In stage 2, each subject plays
four out of the eight games exactly once. We ran two waves of experiments.
Subjects played Game 1 to 4 in wave 1 and Game 5 to 8 in wave 2.1' In
treatment “info”, subjects can see their opponent’s ordinal ranking of the four
payment pairs used in the current game, whereas in treatment “baseline”,
this information is not disclosed.

2.1. Stage 1 of the experiment

Stage 1 is identical in both treatments. Subjects are asked to create an
ordinal ranking over the following set X, of eight payment pairs (.., z.):

Xrow ={(8,3), (7,7), (5,8), (4,4), (6,2), (3,8), (3,3), (2,2)} (1)

The first number, x,., corresponds to the amount of money (in Euros) paid
to the decision-maker in the role of a row player. The second number, z., is

"The games are described in detail in section 2.2.
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paid to some other subject in the role of a column player (the “recipient”).?

Subjects are informed that they will not interact with the recipient in any
other way in either stage of the experiment.

The order in which the payment pairs appear on the screen was randomly
determined beforehand and remains constant in all sessions. Subjects rank
the payment pairs by assigning a number between one and eight to each pair,
where lower numbers indicate a higher preference. The same number can be
assigned to multiple payment pairs, thus allowing for indifference.

In treatment info, subjects are told that their rankings would be disclosed
to other participants at a later stage of the experiment.!®> In treatment
baseline, we made it clear that this information would not be revealed. We
will explain at the end of this section how the elicitation of preferences was
incentivized. After subjects confirm their ranking, they proceed to stage 2,
in which they play four one-shot 2 x 2 games.

2.2. Stage 2 of the experiment

We ran two waves of experiments. In the first wave, subjects played the
games in Figure 3 (all numbers are payments in Euro). In the second wave,
they played the games in Figure 4. All games were constructed using the
same eight payment pairs, see set X, defined in (1).

We made sure that the games exhibit some diversity with respect to the
number of pure strategy Nash equilibria under the assumption that subjects
are selfish payment maximizers. The eight games were selected on the basis
of two key criteria that seem to play an important role in the context of our
study:

(i) # players, who have a strictly dominant strategy (0, 1 or 2) and
(ii) # pure Nash equilibria (0, 1 or 2).

Both criteria were determined for the case where preferences correspond
to monetary payoffs (i.e., on the basis of the game-forms). 2 x 2 games can

12Qubjects who were assigned the role of a column player ranked the same pay-
ment pairs but the first number corresponds to the other player’s payoff. Rewrit-
ing X,o, for column players such that the first number corresponds to the col-
umn player’s payment and the second to the row player’s, we obtain X.opmn =
{(8,3), (7,7), (8,5), (4,4), (2,6), (3,8), (3,3), (2,2)}.

13We will discuss the possibility that subjects might strategically misrepresent their
preferences in the results section.



be grouped into 6 categories based on these two criteria (some combinations
are not possible, e.g., 2 players with strictly dominant strategies and 2 Nash
equilibria). Games with more than 2 pure equilibria are unlikely to offer
valuable insights for our analysis because they are not expected to generate
many relevant observations. We first run wave 1 of the experiment, then
we selected the games of wave 2 so that we have at least one game of each
of the 6 categories. Furthermore, we wanted to cover most of the 2 x 2
games that are frequently used in experimental economics (e.g., Prisoners’
Dilemma, Matching Pennies, and Battle of Sexes).

L | R L | R

Game 1 | U |4,4|8,3 Game 3 | U |4,48,3
D|38|77 D |33|77

L | R L | R

Game 2 | U | 5,8 | 7,7 Game 4 | U | 8,322
D|6,2]3,3 D|7,7]3,8

Figure 3: Games in wave 1

L | R L | R

Game 5 | U | 3,8 8,3 Game 7 | U | 8,3 6,2
D\|33|77 D |7,7]58

L | R L | R

Game 6 | U | 8,31 2,2 Game 8 | U |3,3|8,3
D|22]38 D [22|77

Figure 4: Games in wave 2
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2.3. Experimental procedure, treatment information and incentives

In both treatments, subjects can see how they ranked the four payment
pairs of the currently played game. This information is displayed by assign-
ing 1-4 stars to each outcome, where more stars indicate a better outcome.
In treatment info, subjects are shown both their own and their opponent’s
ranking in matrix-form (see Figure 5). Just like in the payment matrix, the
first entry corresponds to the subject’s own ranking while the second entry
reveals the opponent’s ranking. In treatment baseline, subjects are shown
the same rankings matrix but this matrix only contains their own rankings.

Game 1

Payoffs:

up 4.4 8,3

down 3,8 7.7

Rankings:

More stars stand for better payoff pairs.

left right

up

down

Your decision:

Figure 5: Information screen

All subjects play each of the four games of their wave exactly once, each
time against a different anonymous opponent. Games are played one after
another and feedback about the outcome is only provided at the end of
the experiment when subjects are paid, but not while subjects still make
decisions.

11



In both treatments, each subject is paid for exactly one of his decisions,
which is randomly selected at the end of the experiment. If a decision from
stage 1 is chosen, two of the eight payment pairs from the set X,,, are
randomly selected. The row subject is then paid the first number, x,., of the
payment pair that he ranked more highly in stage 1. The second number,
Z., 18 paid to some other column subject. In order to avoid reciprocity
considerations, we made it clear that the second number is paid to a subject
with whom subjects will not interact in the second stage of the experiment.
Column subjects are paid in a similar manner.

The probability that stage 1 is paid is g while stage 2 is paid with a prob-
ability of %. These probabilities are consistent with selecting each of the (Z)
possible pairs of payment pairs and each of the four decisions made in stage 2
with equal probability. Paying stage 1 with a substantially higher probabil-
ity also reduces the odds that subjects might misrepresent their preferences.
This issue will be discussed in more detail in Section 3.4.

Subjects were given printed instructions and they could only participate
after successfully answering several test questions. Test questions as well
as the rest of the experiment were programmed using Z-Tree (Fischbacher,
2007). All sessions of the experiment were conducted at the AWI-Lab of
the University of Heidelberg. Subjects from all fields of study were recruited
using Orsee (Greiner, 2015). Fewer than half of the subjects were economics
students. Sessions lasted about 40-50 minutes on average. The following
table summarizes the number of participants per session as well as average
payments:

Table 1: Summary of treatment information

Treatment Wave Sessions Subjects Average payment

baseline 1 9 97 € 12.02
baseline 2 7 91 € 10.54
info 1 8 95 € 11.78
info 2 7 85 € 11.41

Decisions made by subjects who made more than 10 mistakes when an-

12



swering test questions are excluded from the data (including Table 1).14

3. Results

In this section, we first characterize subjects’ preferences as measured
in stage 1 of the experiment. We then present the main treatment effect:
subjects are significantly more likely to play their unique equilibrium strategy
in treatment info than in treatment baseline. This effect can be observed in 6
of the 8 games. Subsequently, we show that maxmin and maxmax strategies
are more likely to be played in both treatments. We argue that it is unlikely
that subjects misrepresent their true preferences or that many preferences
changed when subjects are shown their opponents’ preferences.

3.1. Characterization of measured preferences

In stage 1 of the experiment, we elicit subjects’ preferences over the pay-
ment pairs (z,, z.) € X, defined in equation (1). Tables 2 and 3 show the
ordinal rankings reported by at least two subjects who were assigned the role
of a row and column player respectively. Payment pairs that are assigned a
lower number are preferred to payment pairs with a higher number.

14The main treatment effect (Table 7) is still significant when these 10 subjects are
included. In treatment baseline, 2 subjects made more than 10 mistakes, in treatment
info, there were 8 such subjects. It is not plausible that the decisions of the excluded sub-
jects affected other subjects’ decisions since all of our games are simultaneous games and
subjects were not informed about the decisions of their opponents during the experiment.

13



Table 2: Preferences reported by at least two subjects who were assigned the role
of a row player, both treatments. Smaller numbers are assigned to better ranked
payment pairs.

8,3) (7,7) (5,8) (44) (6,2) (3,8) (3,3) (2,2) =n

1 2 4 ) 3 6 7 8 63
1 2 4 ) 3 7 6 8 15
2 1 4 5 3 6 7 8 15
1 2 4 ) 3 6 6 8 12
2 1 3 ) 4 6 7 8 10
2 1 3 6 4 ) 7 8 7
1 2 3 ) 4 6 7 8 d
2 1 3 4 5 6 7 8 5
3 1 2 ) 6 4 7 8 3
3 1 2 ) ) 3 7 8 3
1 2 3 ) 3 6 7 8 2
1 2 3 4 5 6 7 8 2
3 1 2 6 ) 4 7 8 2
3 1 2 4 ) 6 7 8 2
1 1 4 ) 3 6 7 8 2
1 2 5 4 3 7 6 8 2
1 2 4 6 3 ) 7 8 2

14



Table 3: Preferences reported by at least two subjects who were assigned the role
of a column player, both treatments. Smaller numbers are assigned to better ranked
payment pairs.

(8,3) (7,7) (85) (4,4) (2,6) (3,8) (3,3) (2,2) =n

2 3 1 4 7 5 6 8 068
3 2 1 4 7 > 6 8 14
3 1 2 4 7 b} 6 8 14
3 1 2 ) 6 4 7 8 8
1 3 1 4 7 5 5 7 5
3 1 2 4 8 6 ) 7 3
1 3 1 4 8 6 ) 7 4
3 2 1 ) 7 4 6 8 4
2 3 1 4 7 ) 5 7 4
3 2 1 ) 6 4 7 8 3
1 3 1 4 7 ) 6 8 3
4 1 2 3 6 5 7 8 2
1 3 2 4 8 6 ) 7 2
3 1 2 4 6 ) 7 8 2
2 3 1 4 6 ) 7 8 2
3 2 1 4 8 6 ) 7 2
3 1 2 4 8 7 ) 6 2

15



To characterize subjects’ preferences, we introduce four properties: pareto-
efficiency, strict pareto efficiency, maximization of own payoff, and maximiza-
tion of total payoff. These properties are defined as follows:

Definition 1 (Pareto efficiency). A subject’s preferences 77 on X are said to
satisfy pareto-efficiency if, for all x,y € X,ow, * > y whenever z, > y, and
. > 1y with at least one inequality strict.

Definition 2 (Strict pareto efficiency). A subject’s preferences 77 on X are
said to satisfy strict pareto-efficiency if, for all x,y € X,,u, © > y whenever
Ty >y, and T, > Y.

Definition 3 (Own payoff maximization). A row (column) subject is said
to mazimize his own payoff if, for all x,y € X,ouw (2,y € Xeotumn), T = Y
whenever x, > vy, (. > y.).

Definition 4 (Total payoff maximization). A subject is said to mazimize
total payoff if, for all x,y € X, o, © > y whenever x, + x. > ¥, + Y.

Table 4 shows the fraction of subjects whose preferences are consistent
with the properties defined above.

Table 4: Measured preferences

Treatment  Pareto Strict pareto  Own payoff Total payoff n

efficiency efficiency max. max.
Pooled 70.9% 90.2% 48.6% 4.6% 368
Baseline 71.8% 90.4% 46.8% 4.3% 188
Info 70.0% 90.0% 50.6% 5.0% 180

Preferences that satisfy pareto efficiency or own payoff maximization must
also satisfy strict pareto efficiency. The vast majority of subjects report pref-
erences that are consistent with strict pareto efficiency. Table 5 further clas-
sifies those preferences. Clearly, most preferences that satisfy strict pareto
efficiency also satisfy either pareto efficiency or own payoff maximization or

16



both. Only 6.9% of the preferences that satisfy strict pareto efficiency are not
consistent with either pareto efficiency or own payoff maximization (pooled
data). Notice also that preferences that satisfy total payoff maximization
must simultaneously satisfy pareto efficiency.

Table 5: Preferences that satisfy strict pareto efficiency

Treatment Pareto Own payoft Pareto and Only strict n

max. Own payoff pareto
max
Pooled 78.6% 53.9% 39.5% 6.9% 332
Baseline 79.4% 51.8% 37.6% 6.5% 170
Info 77.8% 56.2% 41.4% 7.4% 162

3.2. Nash equilibrium play

Our first hypothesis is that subject behavior is more consistent with the
Nash equilibrium when preferences are mutually known. We test this hy-
pothesis by using two different subsets of our data, which are depicted in
Figure 6. Notice that we use the preferences elicited in stage 1 to identify
dominant and equilibrium strategies.

There are a total of 368 subjects who participated in the experiment.
Since each subject played four games (=four decisions) in stage 2, we have
data on 1472 individual decisions, 752 in treatment baseline and 720 in treat-
ment info. Only one type of strategic situation is of interest: a unique pure
Nash equilibrium where one player has a unique equilibrium strategy that
is neither weakly nor strictly dominant.'®> Therefore, we exclude those de-
cisions where both strategies are played with strictly positive probability in
some Nash equilibrium. Furthermore, we exclude those decisions where the
equilibrium strategy is weakly or strictly dominant. In such a situation, the
best response does not depend on the other player’s strategy and therefore,

5Notice that this is only possible when the other player has a strictly dominant strategy.
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it should not matter whether or not the other players’ preferences are known.
This leaves us with 279 relevant individual decisions, 140 in treatment base-
line and 139 in treatment info. In all of the 279 games, the subject whose
decision we study has a unique pure equilibrium strategy and that subject’s
opponent has a strictly dominant strategy. We test our main hypothesis us-
ing these 279 observations and will refer to the corresponding subset of our
data as “all subjects”.

We also consider a subset of the set “all subjects” which no longer includes
the decisions made by subjects who played a strictly dominated strategy in
at least one of the four games. Either the preferences that these subjects re-
ported in stage 1 do not reflect their true preferences or they are not rational
in the sense that their choice in stage 2 is inconsistent with their reported
preferences. Table 6 shows that approximately one fourth of our subjects
violate strict dominance at least once. Removing the choices made by incon-
sistent subjects therefore further reduces the number of observations to 226
individual decisions, 115 in treatment baseline and 111 in treatment info. We
will refer to this subset of our data as “consistent subjects only”.

Individual decisions: 1472
1

Baseline: 752 Info: 750

Info: 139

1
1
I
1
Baseline: 140 :

1
1
Baseline: 115 : Info: 111
1
1

226 (consistent] subjects only)
1

Relevant decisionIB: 279 (all subjects)
I

Figure 6: Relevant observations for equilibrium analysis

18



Table 6: Violations of strict dominance

Treatment Subjects Games — Games Dominated Subjects
played with dom- strategy who played
inant played dominated
strategy strategy at
least once
Baseline 188 752 280 23.2% 26.1%
Info 180 720 295 24.4% 29.4%

Figure 7 shows that subjects play an equilibrium strategy more often in
treatment info than in treatment baseline.

All subjects Consistent subjects only

I Bascline M Info

Figure 7: Frequencies of played unique equilibrium strategies

To test whether these differences are significant, we run a logit regression.
The dependent variable “equilibrium strategy played” assumes a value of 1 if
a subject plays the unique equilibrium strategy and 0 otherwise. We include
an intercept as well as a dummy variable, which assumes a value of 1 if the
observation is generated in treatment info and 0 otherwise. These results are
shown in Table 7. The treatment effect is significant indicating that informing

19



subjects about their opponents’ preferences leads to a higher frequency of
equilibrium play. Furthermore, the treatment effect is comparable when we
only use the decisions made by these consistent subjects, even though the
number of observations is reduced by approximately 20%.

Table 7: Logit regression “equilibrium strategy played”, robust standard errors clus-
tered by subject

Dependent variable: All Subjects Consistent subjects only
equilibrium strategy played
info 0.54** 0.60*
(0.26) (0.29)
constant -0.41* -0.41*
(0.18) (0.20)
n 279 226
Clusters 212 166
Pseudo R? 0.013 0.016

** significant at 5% level
Notes: Marginal fixed effects of change of variable “info” from 0 to 1 are 0.13** for the
specification “All subjects” and 0.15** for “Consistent subjects only”

We also test whether there is a significant treatment effect using a two-
tailed two-sample Wilcoxon rank-sum test. The dependent variable is the
frequency with which a subject played an equilibrium strategy. Each subject
who plays at least one game where the subject has a unique equilibrium strat-
egy that is not weakly or strictly dominant counts as one observation. We
run the same test for all subjects and for consistent subjects only. When us-
ing all (only consistent) subjects, we have 107 (87) observations in treatment
baseline and 105 (79) in treatment info. The null hypothesis that the distri-
bution of the frequency of equilibrium play is the same in both treatments
can be rejected regardless of which data set we use.'%

Result 1. Subjects are more likely to play their unique Nash equilibrium
strategy when preferences are mutually known.

165=0.083 using all subjects, p=0.086 using consistent subjects only.

20



As a robustness check, we also compute the frequency of equilibrium play
for each game separately. These results are shown in Figure 8 for all subjects
and in Figure 9 for consistent subjects only. Information about the number
of relevant decisions for each game can be found in the tables A.10 and A.12
in the appendix. Regardless of which subset of our data we use, the frequency
of equilibrium play is higher in treatment info than in treatment baseline for
every game!” except for games 5 and 6.

At first glance, subject behavior in Game 5 appears to be surprising:
there is less equilibrium play in treatment info than in treatment baseline.
A detailed check shows that all subjects, who did not take the equilibrium
stategy in treatment info, were column players who played strategy R. The
row players had the strictly dominant strategy U. Our second main result
in Section 3.3 shows that many subjects followed a heuristic approach by
selecting maxmax and/or maxmin strategies. Game 5 exhibits a special
feature: the equilibrium and maxmax/maxmin strategy especially often fall
apart. In several cases the (non-equlibrium) strategy R is both the maxmax
and the maxmin strategy. These cases occur considerably more often in
treatment info than in treatment baseline: in treatment info, 6 out of 10
subjects who violated the equilibrium prediction faced such a situation, while
this is only the case for 1 out of 3 subjects in treatment baseline.

In Game 6 the frequency of equilibrium play is zero in both treatments
as Figure 8 shows. This is in line with what we have expected: recall that
Game 6 is a “Battle of Sexes”-type game-form and we expected that the
game that subjects actually play (the induced game) is in most cases a “Bat-
tle of Sexes”-type game. Consequently, the situation that one subject has a
unique non-dominant equilibrium strategy occurs very rarely here (for con-
sistent subjects, we only have 5 relevant cases in both treatments together).
Nonetheless, it makes sense to incorporate this situation in our analysis.
First, we intend to provide a comprehensive analysis of the most popular
games used in the experimental literature as described in the introduction.
Second, we wanted to test whether the outcome meets our expectations.

1"Using a Fisher exact test, this difference is significant at the 5% level for Game 3,
when we use all subjects. We have more observations for Game 3 than for any other
game. In Game 3, it occurred particularly often that one subject had a strictly dominant
equilibrium strategy while the other subject did not have a strictly or weakly dominant
strategy. Details of these tests can be found in the appendix (tables A.10 and A.12).
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1 2 3 4 5 6 7 8
I Bascline I Info

Figure 8: Frequency of equilibrium play by game, all subjects

1 2 3 4 5 6
I Bascline M Info

Figure 9: Frequency of equilibrium play by game, consistent subjects only
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3.8. Maxmin and maxmaz strateqy play

As outlined in the introduction, playing a maxmin or a maxmax strategy
can be a response to strategic uncertainty. Therefore, our second hypothesis
is that a strategy is more likely to be played when it is a maxmin and/or a
maxmax strategy. Subjects may use these strategies when they are uncer-
tain about other players’ payoff functions and/or other players’ rationality.
In treatment baseline, subjects face both types of uncertainty, whereas the
uncertainty about other players’ payoffs is removed in treatment info. Since
there is some uncertainty in both treatments, we would expect a strategy
to be played more often if it is a maxmin or a maxmax strategy in both
treatments. Both effects are expected to be stronger in treatment baseline
compared to treatment info.

We test these conjectures by running a conditional logit regression. An
observation corresponds to a pure strategy. The dependent variable (“played”)
assumes a value of 1 if a strategy is played and 0 otherwise. Three indepen-
dent variables are used to characterize each strategy: “equilibrium” indi-
cates whether a strategy is a Nash equilibrium strategy. “maxmax” assumes
a value of 1 if a strategy can lead to a most highly ranked payment pair.
“maxmin” indicates whether a strategy can result in the realization of a
lowest ranked payment pair (maxmin = 0 if that is the case, maxmin = 1
otherwise).

We only use decisions made by subjects who never played a strictly dom-
inated strategy. Table 8 shows that whether or not a strategy is a Nash
equilibrium strategy only matters in treatment info when predicting which
strategies subjects will play. In contrast, the coefficients of maxmax and
maxmin are highly significant in both treatments. While the three inde-
pendent variables (“equilibrium”, “maxmax” and “maxmin”) are correlated,
all pairwise correlation coefficients are lower than 0.5. Further details on the
relationship of the three independent variables can be found in the appendix.

Result 2. In both treatments, a strategy is more likely to be played when it
cannot lead to the lowest ranked payment pair and when it can lead to the
highest ranked payment pair.

In line with Result 1, the coefficient estimate for the variable “equilib-
rium” differs significantly among the two treatments and is only useful to
predict play in treatment info but not in treatment baseline. In contrast, the
highest and lowest ranked payment pair seems to attract our subjects’ atten-
tion in both treatments. As expected, the according coefficient estimates are
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higher in treatment baseline than in treatment info. However, the difference
is not signficant.'®

Table 8: Conditional logit regression “played”, robust standard errors clustered by
subject

Dependent variable: Baseline Info

played

equilibrium 0.09 0.89****
(0.21) (0.22)

maxmax 1.617 117"
(0.18) (0.15)

maxmin 1.39%*  1.29 ****
(0.17) (0.15)

n 1112 1016

Clusters 139 127

Pseudo R? 0.40 0.41

Fokokok

significant at 0.1% level

3.4. Did we manage to elicit subjects’ true preferences?

This section first discusses evidence suggesting that subjects did not
strategically misrepresent their preferences in stage 1. Then, we show that
preference reversals, which might be caused by reciprocal preferences or by
the specific game-form, can only lead to a downward bias. Hence, the “true”
treatment effect might be even stronger.

Strategic misrepresentation

When preferences are elicited in stage 1 of the experiment, subjects in
treatment info are aware that these preferences will be revealed to other
subjects. However, they are not informed about the specific games that are
played in stage 2. Hence, subjects did not have the information necessary to

18The coefficient estimate of an interaction term of maxmin and the treatment dummy
(maxmax and the treatment dummy) is not significant.
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figure out what kind of misrepresentation might be most advantageous: in
some 2 x 2 games, it could be beneficial to be perceived as having pro-social
preferences whereas in other games, the contrary is more likely (e.g., in the
chicken game). Moreover, recall that a decision made in stage 2 affects a
subject’s payment with a probability of only 1/8. All in all, in treatment
baseline, subjects had clear and strong incentives to truthfully report their
preferences. It was clear to subjects that their reports would not be revealed
to anyone but the experimenter. Therefore, it is unlikely that subjects in
treatment baseline misrepresented their preferences.

If many subjects in treatment info misrepresented their preferences, we
would expect to observe some significant differences between treatment info
and baseline. First, we would expect that the preferences reported in stage
1 significantly differ with presumably a higher share of selfish types in the
baseline treatment. We checked our data and find that there is no signifi-
cant difference between the treatments with respect to the most commonly
reported preference types. The share of selfish types is even higher in treat-
ment info than in baseline.

Second, and more importantly, we would expect significantly more dom-
inance violations in treatment info than in baseline. We test this hypothesis
by using the frequency with which subjects play strictly dominated strate-
gies in stage 2 of the experiment. To identify strategies that are strictly
dominated, we use the preferences elicited in stage 1. If these reflect a sub-
ject’s true preferences, a rational subject should never play such a strictly
dominated strategy. In contrast, if subjects strategically misrepresent their
preferences in stage 1, a strategy that we classify as strictly dominated may in
fact not be dominated according to the subjects’ true preferences. Therefore,
we can compare the frequency with which subjects play a strictly dominated
strategy in the two treatments to test the claim that preferences are truth-
fully revealed in stage 1 of treatment info. If that claim is true, no difference
should be observed. Otherwise, subjects should be more likely to play a
strictly dominated strategy in treatment info than in baseline.

Table 6 shows how often subjects play a strictly dominated strategy in
the games induced by their preferences reported in stage 1. In order to
check the assumption that subjects do not misrepresent their preferences
in both treatments, we run a logit regression using the games with strictly
dominant strategies (280 in treatment baseline and 295 games in treatment
info) as observations. The dependent variable “dominated strategy played”
is a dummy variable that assumes a value of 1 if the strictly dominated
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strategy was played. The only explanatory variable other than the intercept
is a treatment dummy (“info”) (see Table 9).

Table 9: Logit regression “dominated strategy played”, robust standard errors clus-
tered by subject

Dependent variable: dominated strategy played

Info 0.07
(0.23)
Constant -1.20%**
(0.16)
n 575
Clusters 333
Pseudo R? 0.0002

***significant at 1% level

The coefficient estimate for the treatment dummy is not significantly
different from 0. Hence, the null hypothesis cannot be rejected. We also test
the same assumption using a two-tailed two-sample Wilcoxon rank-sum test.
The dependent variable is then the frequency with which a subject plays a
dominated strategy. Each subject who had a strictly dominant strategy in
at least one of the four games corresponds to an observation. There are 165
such observations in treatment baseline and 168 in treatment info. We cannot
reject the null hypothesis that the frequency with which strictly dominated
strategies are played follows the same distribution in the two treatments
(p=0.81).

Result 3. Subjects are equally likely to play a strictly dominated strategy in
both treatments.

Moreover, the fraction of subjects whose reported preferences are consis-
tent with own payoff maximization is even slightly larger in treatment info
compared to treatment baseline, though the difference is not significant (p=
0.53 using a Fisher exact test). All other properties of measured preferences
that we discussed in section 3.1 are also satisfied equally frequently in both
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treatments (see tables 4 and 5). We therefore maintain the assumption that
subjects truthfully report their preferences in stage 1 of the experiment in
both treatments.

Preference reversals

In psychological game theory, Rabin (1993) and Dufwenberg and Kirch-
steiger (2004) introduced models of reciprocity in which players reward kind
actions and punish unkind ones. Reciprocity could lead to a problem equiv-
alent to the misrepresentation of preferences discussed in this section. For
instance, consider Game 1 in stage 2 of treatment info. Suppose an own-
payoff maximizer (row) is matched with a total-payoff maximizer (column).
The row player might then believe that column will cooperate (play R), even
though column expects row to defect (play U). This expected kindness on the
part of column might then induce row to also cooperate, thus violating our
assumption that only outcomes matter. In other words, subjects’ preferences
might change once they are shown their opponents’ ranking of payment pairs
in stage 2 of treatment info. Another potential violation of our assumption
might arise if subjects’ preferences over payment pairs changed once they are
shown the specific game-form.

Since there is a significant treatment effect, such preference reversals
would be only a problem if they led to a systematic upward bias (indicating
a false-positive result). There is no reason that preference reversals arising
from the strategic situation lead to such a bias because subjects face the
same game-forms in both treatments. In contrast, reciprocity effects might
be relevant here because subjects’ preferences are only revealed in treatment
info. However, reciprocity effects cannot cause an upward bias: recall that
we determined each player’s equilibrium strategy based on his reported pref-
erences in stage 1. Furthermore, we only study situations in which each
player has a unique equilibrium strategy. If a player changes his preferences,
he may want to deviate from this equilibrium strategy. Hence, reciprocal
preferences may lead to less (but not more) equilibrium play in treatment
info. This suggests a systematic downward bias, which would mean that the
“true” treatment effect is even stronger.

We cannot exclude that preference reversals caused some noise, in par-
ticular dominance violations, in our experiment. Subjects played in roughly
a quarter of the games a strictly dominated strategy (see Table 6). At first
glance, this number may appear high. However, it is considerably lower than
the number of dominance violations in many standard experiments, which
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assume that subjects only care about their own monetary payments. For in-
stance, in a meta study by Sally (1995) the proportion of dominance violation
in prisoner’s dilemma games lies between 30 and 40%.

All in all, we found a significant treatment effect despite many factors
that potentially caused noise in the experiment. In our view, this makes our
result more robust and indicates that the “true” treatment effect might be
underestimated.

4. Conclusion

The assumptions that monetary payoffs in strategic situations represent
players’ utilities and that their preferences are mutually known are often not
satisfied. Our experiment shows that both assumptions play an important
role: first, the game that subjects actually play is often very different from
the one in which monetary payoffs represent utilities. Second, the treat-
ment effect shows that mutual knowledge of preferences leads to significantly
more equilibrium play. Hence, alleged violations of Nash equilibrium can be
attributed, to some degree, to the violations of these two assumptions.

The main result of this study suggests that subjects fail to accurately pre-
dict other players’ preferences and that this significantly affects their behav-
ior. It is plausible that similar difficulties exist in many real-world situations
as well because people often have no precise information about how other
people evaluate the outcomes of an interaction. Many other models that are
used in behavioral game theory (e.g., level-k models) also rely on the assump-
tion of mutual knowledge of preferences. Since in the games we analyzed,
subjects often fail to play a Nash equilibrium strategy when preferences are
not mutually known, these models also might fail to accurately predict be-
havior whenever this assumption is not met. Therefore, when deciding what
model to apply for analyzing a specific situation, the question whether or not
agents can reasonably be expected to know other agents’ preferences should
play an important role.

Our second result shows that subjects are more likely to play maxmin or
maxmax strategies rather than the Nash equilibrium strategy. Hence, many
people seem to rely on heuristics rather than on strategic considerations when
selecting a strategy.
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Appendix A. (for online publication only)

Appendiz A.1. Details of the robustness check tests for the main result

Tables A.10 and A.12 report the results of a two-tailed Fisher exact test of
the null hypothesis that the probability that a subject plays the equilibrium
strategy is the same in both treatments. These tests were run separately
for each of the 4 games. n_base is the number of observations in treatment
baseline and n_info the number of observations in treatment info. The tests
reported in Table A.10 include all subjects while those reported in Table

A.12 include consistent subjects only.

Table A.10: Fisher exact test (two-tailed), all subjects.

Game n_base n.info p-value
1 22 15 0.193
2 11 17 1.000
3 30 32 0.028
4 18 17 0.176
5 17 20 0.082
6 4 3 n.A.
7 22 21 0.364
8 16 14 0.484

Table A.11: Dominance violations per game

Game baseline info
1 15/62  16/64
2 3/16 3/19
3 11/38  18/46
4 9/42 9/30
5 9/17  10/25
6 0/5 0/3
7 10/47  11/55
8 8/53 5/53
Total ~ 65/280 72/295
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Table A.12: Fisher exact test (two-tailed), consistent subjects only.

Game n_base n_info p-value

17 11 0.121

7 13 0.374
23 25 0.075
10 10 0.170
17 18 0.075

3 2 n.A.
22 21 0.364
16 11 0.696

O 1 O O W N

Table A.13: Properties of strategies available to consistent subjects, by treatment

equilibrium maxmax maxmin n_baseline n_info

0 0 0 332 322
0 1 0 236 199
1 1 1 187 189
0 0 1 182 143
0 1 1 61 56
1 1 0 o6 44
1 0 1 34 37
1 0 0 24 26

Appendiz  A.2. Details on the conditional logit regression (table 8)

Table A.13 provides additional information for both regressions that are
displayed in table 8: We check for each pure strategy available to consis-

tent subjects whether it is a Nash equlibrium strategy (“equilibrium” = 1),
whether it is the maxmax strategy (“maxmax” = 1) and whether it is the
maxmin strategy (“maxmin” = 1). “n_baseline” indicates the number of

pure strategies in treatment baseline, “n_info” the number of strategies in
treatment info.
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Appendiz A.3. Ezperiment instructions
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Treatment Baseline: Instructions Part 1

1 General Information

Welcome to this experiment and thank you very much for your participation! Please
switch off your mobile phone now and do not communicate with each other any
more. If you have a question, raise your hand, we will come over to your seat and
answer it individually. In this experiment, you can earn a substantial amount of
money. The amount you earn depends on your own decisions, the decisions of the
other participants and on chance. The amount of money earned will be paid out
to all participants individually in cash at the end of the experiment. During the
experiment, everyone makes his decisions anonymously on his own. At no point in
time will your decisions be linked to your identity.

This experiment consists of two parts, which are identical for all participants:
In the first part you are shown eight different payoff-combinations, which you are
supposed to evaluate. Each of these combinations consists of two numbers (x, y).
The first number x corresponds to the amount of Euro that you receive yourself
in this situation. The second number y corresponds to the amount that another
participant receives. You are supposed to establish a ranking (a so called ”preference
relationship”) over all these payoff-combinations (x, y). That means, you indicate
which of these combinations you like best, which one second-best, and so on. The
exact procedure will be explained again step by step later on.

The ranking created in this way, as well your decisions in part two of the ex-
periment, will not be revealed to any other participant. After each participant has
created such a ranking over the payoff-combinations, part two of the experiment will
begin. Both parts of the experiment are run at the computer. Before they start, you
are asked several control questions, which shall help you in your understanding of the
experiment. For the second part, you will receive separate instructions. At the end
of the experiment, there will be a short questionnaire and then you will be paid in
cash.

Your total payoff consists of two payments. In order to determine these payments,
one of the decisions made in either part 1 or part 2 of the experiment will be randomly
selected. Further details will be provided later on.




2 Evaluation of Payoff-combinations

We will now explain the first part of the experiment, the evaluation of payoff-combinations.
You will perform this task immediately afterwards at the computer. You will first be
shown the following screen:

Rank Payoffs

Payoffs:

8,3 7.7 58 4,4 6,2 3,8 3,3 22

Insert a Ranking:

Assign an integer between 1 and 8to each payoff-combination.
Assign smaller numbers to better payoff-combinations.

If you are indifferent, you can assign the same number more than once.

In the row below “Payoffs” you see the eight different payoff-combinations (x, y),
which you are supposed to rank (all amounts are in Euro). The payoff combinations
are currently ordered randomly. (Remember: The left value x is the amount you
receive yourself and the right value y is given to a randomly selected other participant.)

You will now assign a number between 1 and 8 to each of these payoff-combinations.
The number 1 corresponds to the first rank, which you shall assign to the combina-
tion you like best. Analogously the second rank shall be assigned to your second-best
combination and so forth until rank 8, which corresponds to your least preferred com-
bination. If you consider two or more combinations as equally good, you are allowed
to assign the same rank/number to them.




After you created your ranking, you will see the following screen:

Confirm payoff-ranking

Payoffs Rank
8,3 1
7.7 2
8,5 3
4,4 4
2,6 &
3,8 6
33 7
2,2 8
I T

Here you see the payoff-combinations, ordered according to your previously stated
preferences. If you like, you can still make modifications. After all participants con-
firmed their ranking, the second part of the experiment will begin.




3 Calculation of your Final Payoff

The one and only payoff-relevant decision will be randomly selected at the end of the
experiment. Your total payoff depends on whether a decision from the first or the
second part of the experiment is selected.

7
With a probability of — a decision of part one will be chosen. In this case, two of

the eight payoff-combinations will be randomly selected. The payoff combination that
you ranked more highly will then be paid out. (If both combinations have the same
rank, one of these two will be randomly selected.). You will receive the first amount,
the value x. In addition, every participant receives exactly one additional payment
y that corresponds to the second amount y of a payment-combination selected for
some other participant. (The assignment is carried out in such a way that the second
amount y from your decision is not distributed to a participant you are interacting
with during the experiment or from whom you receive the second amount yourself.)

Payoff, if selected decision is from part one:

Total payoff = Amount x from own decision + Amount y from decision of some
other participant

1
The probability that a decision from part two is chosen for payment is 3 In

that case, payments depend on the actions chosen by the participants in part two.
The calculation of the final payoff for this case will be explained in the instructions
for this part. (The random draw will be performed by a participant at the end of
the experiment. For that purpose he draws a card from a deck containing 32 cards
numbered 1 to 32. The numbers 1-28 correspond to all possible combinations of two
out of the eight payoff-pairs (x, y)) from the first part. If a number between 29-32 is
drawn, a decision from the second part will be paid out.)




Treatment Baseline: Instructions Part 2

The second part of the experiment is run at the computer as well. This part
consists of four strategic decision situations, in the following referred to as “games”.
In each of these situations, you will be matched with a different participant as game
partner, that means you never interact with the same person twice. You and the
other player simultaneously select one of two possible actions. The row player always
chooses between one of the two actions “up” and “down” and the column player
always decides between the actions “left” and “right”. (For the sake of simplicity,
the game will be displayed for every participant in such a way, that he always acts in
the role as row player and the game partner in the role as column player.)

In every game, there are four possible outcomes. Which one of these outcomes is
selected depends on the action you chose as well as on the action the other player
chooses. The four outcomes are are displayed in the form of a payoff matrix. The
combination (x, y) in one cell of the matrix corresponds to the amounts of money
the two players receive, if the corresponding actions have been chosen. Analogously
to the first part, the left value x indicates the amount of money in Euro that you
receive and the right value y corresponds to the payoff of the other player. The
combinations (x, y) are chosen in such a way, that they assume the exact
same values as those from the first part of the experiment. Thus in every
game there appear four out of the eight payoff pairs evaluated in part one.

If a situation from the second part is chosen for payment, the involved players
receive the payoffs that correspond to the outcome of the game. In contrast to the
first part, each player only receives one amount of money from the payoff-relevant
decision. In addition, each player is given a fixed payment of 5 Euro.

Total payoff = 5 Euro 4+ Payment x obtained in the selected game
In addition to the monetary payments, you are also shown the ranking of the

payoff-pairs used in the current game that you submitted in the first part of the
experiment.




In the computer program, you will see the following screen:

Game 1

Payoffs:

left right

down 3,8 7.7

Rankings:

More stars stand for better payoff pairs.

left right

down

Your decision:

" up
" down

| [

For the sake of clarity, not the exact numbers of the ranking will be shown there,
but instead 1-4 stars. A value of four stars (****) means that the corresponding
payoff-combination was ranked by you as the best combination (among those appear-
ing in the game). Accordingly, the worst combination is marked by one star (*)

Example:

Let us consider the game shown on the screen “Game 17. If, for example, you decide
to play “up” and the other player chooses “right”, then you receive a payoff of 8 Euros
and your game partner a payoff of 8 Euros. Additionally, you can see in the matrix
below, that this is your most preferred outcome.

Are there any questions?

If this is not the case, the second part of the experiment will start shortly...




Treatment Info: Instructions Part 1

1. General Information

Welcome to this experiment and thank you very much for your participation! Please
switch off your mobile phone now and do not communicate with each other any
more. If you have a question, raise your hand, we will come over to your seat and
answer it individually. In this experiment, you can earn a substantial amount of
money. The amount you earn depends on your own decisions, the decisions of the
other participants and on chance. The amount of money earned will be paid out to
all participants individually in cash at the end of the experiment.

This experiment consists of two parts, which are identical for all participants:
In the first part you are shown eight different payoff-combinations, which you are
supposed to evaluate. Each of these combinations consists of two numbers (x, y).
The first number x corresponds to the amount of Euro that you receive yourself
in this situation. The second number y corresponds to the amount that another
participant receives. You are supposed to establish a ranking (a so called ”preference
relationship”) over all these payoff-combinations (x, y). That means, you indicate
which of these combinations you like best, which one second-best, and so on. The
exact procedure will be explained again step by step later on.

After each participant has created such a ranking over the payoff-combinations,
part two of the experiment will begin. In this part, the information provided in the
first part of the experiment will be used. T'wo participants at a time will be shown each
others’ ranking of the payoff-pairs provided in part one of the experiment. In both
parts of the experiment, you will interact with other participants using a computer.
Before we start, you will be asked several control questions, which shall help you in
your understanding of the experiment. For the second part, you will receive separate
instructions. At the end of the experiment, there will be a short questionnaire and
then you will be paid in cash.

Your total payoff consists of two payments. In order to determine these payments,
one of the decisions made in either part 1 or part 2 of the experiment will be randomly
selected. Further details will be provided later on.




2. Evaluation of Payoff-combinations

We will now explain the first part of the experiment, the evaluation of payoff-combinations.
You will perform this task immediately afterwards at the computer. You will first be
shown the following screen:

Rank Payoffs

Payoffs:

8,3 7.7 58 4,4 6,2 3,8 3,3 22

Insert a Ranking:

Assign an integer between 1 and 8to each payoff-combination.
Assign smaller numbers to better payoff-combinations.

If you are indifferent, you can assign the same number more than once.

In the row below “Payoffs” you see the eight different payoff-combinations (x, y),
which you are supposed to rank (all amounts are in Euro). The payoff combinations
are currently ordered randomly. (Remember: The left value x is the amount you
receive yourself and the right value y is given to a randomly selected other participant.)

You will now assign a number between 1 and 8 to each of these payoff-combinations.
The number 1 corresponds to the first rank, which you shall assign to the combina-
tion you like best. Analogously the second rank shall be assigned to your second-best
combination and so forth until rank 8, which corresponds to your least preferred com-
bination. If you consider two or more combinations as equally good, you are allowed
to assign the same rank/number to them.




After you created your ranking, you will see the following screen:

Confirm payoff-ranking

Payoffs Rank
8,3 1
7.7 2
8,5 3
4,4 4
2,6 &
3,8 6
33 7
2,2 8
I T

Here you see the payoff-combinations, ordered according to your previously stated
preferences. If you like, you can still make modifications. After all participants con-
firmed their ranking, the second part of the experiment will begin.




3. Calculation of your Final Payoff

The one and only payoff-relevant decision will be randomly selected at the end of the
experiment. Your total payoff depends on whether a decision from the first or the
second part of the experiment is selected.

7
With a probability of — a decision of part one will be chosen. In this case, two of

the eight payoff-combinations will be randomly selected. The payoff combination that
you ranked more highly will then be paid out. (If both combinations have the same
rank, one of these two will be randomly selected.). You will receive the first amount,
the value x. In addition, every participant receives exactly one additional payment
y that corresponds to the second amount y of a payment-combination selected for
some other participant. (The assignment is carried out in such a way that the second
amount y from your decision is not distributed to a participant you are interacting
with during the experiment or from whom you receive the second amount yourself.)

Payoff, if selected decision is from part one:

Total payoff = Amount x from own decision + Amount y from decision of some
other participant

1
The probability that a decision from part two is chosen for payment is 3 In

that case, payments depend on the actions chosen by the participants in part two.
The calculation of the final payoff for this case will be explained in the instructions
for this part. (The random draw will be performed by a participant at the end of
the experiment. For that purpose he draws a card from a deck containing 32 cards
numbered 1 to 32. The numbers 1-28 correspond to all possible combinations of two
out of the eight payoff-pairs (x, y)) from the first part. If a number between 29-32 is
drawn, a decision from the second part will be paid out.)
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Treatment Info: Instructions Part 2

The second part of the experiment is run at the computer as well. This part
consists of four strategic decision situations, in the following referred to as “games”.
In each of these situations, you will be matched with a different participant as game
partner, that means you never interact with the same person twice. You and the
other player simultaneously select one of two possible actions. The row player always
chooses between one of the two actions “up” and “down” and the column player
always decides between the actions “left” and “right”. (For the sake of simplicity,
the game will be displayed for every participant in such a way, that he always acts in
the role as row player and the game partner in the role as column player.)

In every game, there are four possible outcomes. Which one of these outcomes is
selected depends on the action you chose as well as on the action the other player
chooses. The four outcomes are are displayed in the form of a payoff matrix. The
combination (x, y) in one cell of the matrix corresponds to the amounts of money
the two players receive, if the corresponding actions have been chosen. Analogously
to the first part, the left value x indicates the amount of money in Euro that you
receive and the right value y corresponds to the payoff of the other player. The
combinations (x, y) are chosen in such a way, that they assume the exact
same values as those from the first part of the experiment. Thus in every
game there appear four out of the eight payoff pairs evaluated in part one.

If a situation from the second part is chosen for payment, the involved players
receive the payoffs that correspond to the outcome of the game. In contrast to the
first part, each player only receives one amount of money from the payoff-relevant
decision. In addition, each player is given a fixed payment of 5 Euro.

Total payoff = 5 Euro 4+ Payment x obtained in the selected game

As announced before, you will now receive information about each others’ pref-
erences. This means that in addition to the payoff matrix you are shown another
matrix below, in which you can see how you and the other player ranked the payoff
combinations used in the current game in the first part of the experiment. Note:
you interact with a different partner in every game and therefore the ranking of your
opponent may change from one game to another.
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In the computer program, you will see the following screen:

Game 1

Payoffs:

left right

up 4.4 83

down 3,8 7.7

Rankings:

More stars stand for better payoff pairs.

left right

up

down =

Your decision:

Lo up
 down

s

For the sake of clarity, not the exact numbers of the ranking will be shown there,
but instead 1-4 stars. A value of four stars (****) means that the corresponding
payoff-combination was ranked by you as the best combination (among those appear-
ing in the game). Accordingly, the worst combination is marked by one star (*)

Example:

Let us consider the game shown on the screen “Game 17”. If, for example, you decide
to play “up” and the other player chooses “right”, then you receive a payoff of 8 Euros
and your game partner a payoff of 8 Euros. Additionally, you can see in the matrix
below, that this is your most preferred outcome, but the least preferred outcome of the
other player.

Are there any questions?

If this is not the case, the second part of the experiment will start shortly...
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